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Context
Macrofinancial model initially developped by Tobias Adrian et al.
at the NY Fed (Vulnerable Growth, AER April 2019)

Operationalized for policy applications: cf. IMF WP 19/36 on
Growth at Risk: Concept and Application in IMF Country
Surveillance (2019)

IMF GaR is coded in Python, first used internally. Later, public
release of a user-friendly Excel interface (no knowledge of Python
required)

Open-source code, publicly released on Github. Internal and
external review

Internal use: GaR used for Article IV, FSAP scenario calibrations,
technical assistance, etc.

External use: More than 30 countries are using the tool now
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Growth at Risk: Overview

GaR is a reduced-form model

Forecast a conditional distribution of future GDP growth, at
different horizons

Based on quantile regressions using a set of macro and
financial regressors, customizable for each countries

Useful to estimate potential ”tail” realizations of GDP (e.g.
5th percentile)

Probabilistic assessment: associate a GDP potential
realization from a given risk level (e.g. 5%)
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Final output

Given current macrofinancial conditions, distribution of economic
growth in the future

For τ ∈ Ω : yt+h = ατ + βτ1X1,t + · · ·+ βτkXk,t + ετt+h

where Ω is a set of quantiles, e.g. 5th, 25th, median, etc.
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Concept

Idea
Forecast the conditional density of future GDP growth Yt+h at a
given horizon h

Density: Estimate the probability distribution function (pdf)
fY : P [Yt+h ∈ Θ] =

∫
Θ fY (y)dy, for Θ a measurable interval

Conditional: density depends on a regressors set, observed at
period t or in the past: fYt+h|Xt

Intuition
Based on the current set of macrofinancial conditions observed
recently, what is the probability that future GDP growth will be around 2
percent in the next year?
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From VaR to GaR

In finance, the Value at Risk (VaR) is defined as ”the lowest value
of a portfolio with a given probability, based on historical or
conditional data”

The idea of Growth at Risk is to transpose the concept in
macroeconomics

GaR at 5% is the future GDP value so that only 5% of the
potential growth realizations will be below it: represents a ”lower
bound” in terms of risk

Note that the tool also estimates the associated concepts with
VaR, such as Expected Shortfall (average of all losses which are
greater or equal than VaR)
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Originality from a Statistical Perspective

Estimating conditional distribution is not new: copulas (multivariate
pdf) and non-parametric approaches are popular in finance

However, interpretability is difficult and the estimation requires
large datasets

GaR Contribution: a VaR Model for Macro Data
Simple (linear) and parsimonious model to estimate density
forecasts
Based on regressions: easy to intepret, familiar to economists
Flexible parametric approach: can be consistent with standard
Article IV point forecasts
Robust to outliers and can be used on macro quarterly data

Lafarguette and Wang (2020) Growth-at-Risk: Theory 7



Empirical Strategy

1 Data partitioning: aggregate a large number of variables into few
regressors, using either unsupervised or supervised technics

2 Quantile regressions: Estimate the forecasting equation

yt+h = βτXt + ετt

for different quantiles at probability τ and a given horizon h

3 Parametric fit: minimize the distance between the empirical
conditional quantiles ˆQyt+h

(τ |Xt) = β̂τXt and the theoretical
quantiles from a parametric family
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Empirical Strategy in Plain English

From past data, find the relationship over time between a few
number of components in t and growth in t+ h.

This relationship is ”quantile dependent”: e.g. housing prices
might not matter in normal times, but might do in bad times

For a given date, X2019, use β̂τ to infer the quantiles of future
growth QY2020(τ |X2019) = β̂τX2019

β̂τ is long-term: statistical relationships over time. X2019 is
real-time: conditions the forecast to current macrofinancial
conditions

From a discrete set of quantiles, infer a ”smooth” distribution,
parametrized from a known family distribution

Lafarguette and Wang (2020) Growth-at-Risk: Theory 9



Data Requirements

Rule of thumb
GaR is based on quantile regressions: needs more points than
standard OLS to be accurate

Rule of thumb: strict minimum is at least 60 points (15 years of
quaterly data), accurately measured. I noticed that around 100
data points (25 years of quarterly data) is a comfortable level

GaR is about crisis: the sample should contain some crisis
episodes to be meaningful. Can be a problem for some countries
(e.g. China). Work in progress: panel estimations

Ergodicity matters: in case of structural breaks, if the economy
radically changed, then past relationships might not be informative
for future risks
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1st Step: Data Partitioning and Dimensionality
Reduction
Idea
Extract the information from a large set of macro and financial
variables and summarize it into few components

This step is useful because:
Having too many variables in a regression increases parametric
noise and risk of overfit

Some individual variables can be noisy: extracting a common
trend/component improves accuracy

Attrition issue: some variables might be available only over a
recent time period

PS: this step is not necessary and is not in the original paper by Adrian et al.
(AER, 2019)
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Concept of Dimensionality Reduction

Source: www.neuraldesigner.com
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Unsupervised vs. Supervised Data Reduction
Methods

The tool currently allows to run three data reduction methods:
1 Unsupervised: Principal Component Analysis (PCA)

2 Supervised on categorical: Linear Discriminant Analysis (LDA)

3 Supervised on continuous: Projection on Latent Structures
(PLS), also called partial least squares

Tip
Although PCA is more familiar to economists, we found PLS to perform
better and has also more intuitive features
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Principal Component Analysis: Derivation

Mathematically, for the first component:
1 First, need to scale XN so that the variables are centered, and

with the same unit
2 PCA is a linear projection, so we look for a set of weights w∗

maximizing the variance of XN , w∗ = argmax{wTXTXw}
3 By construction, XTX is semi-positive definite (it’s a variance). A

standard result is that the eigenvector associated with the largest
eigenvalue solves the optimization program above

4 Intuitively, both eigenvectors and eigenvalues are providing us
with information about the distortion of a linear transformation:

§ the eigenvectors are basically the direction of this distortion
§ the eigenvalues are the scaling factor for the eigenvectors that

describing the magnitude of the distortion.
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PCA applied to an ellipsoidically-shaped points cloud

Source: http://joyofdata.de
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GaR Tool Output: PCA First Component and Loadings
(example)

Source: IMF Staff
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Projection on Latent Structures (PLS) - also called
Partial Least Squares -

Intuition
PLS is a regression-based method where both the Y and X are
projected onto new subspaces (this is why PLS is not ”ordinary”
least square)
Note that Y can be multivariate, as the difference of an OLS
PLS is used to find the fundamental relations between X and Y ,
i.e. a latent variable approach to modeling the covariance
structures in these two spaces
A PLS model will try to find the multidimensional direction in the X
space that explains the maximum multidimensional variance
direction in the Y space.
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PLS Derivation

1 Start from the standard linear model Y = XB + ε

2 Project Y and X such that:
§ X = TPT + E where T is the projection matrix and P the

orthogonal loadings
§ Y = UQT + F where U is the projection matrix and Q the

orthogonal loadings

3 The objective is to find T, P, U,Q so that to maximize the
covariance between the ”latent” structure T and U

The estimation is done via an iterative algorithm
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Why PLS is interesting for GaR

PLS regression is particularly suited when the matrix of predictors
X has more variables than observations, which often happens
with economic data

And also when there is multicollinearity among X values (often
the case with financial variables)

Useful for interpretation: the PLS aggregate will follow one or
more target variables (e.g. term spread)

Important to anchor the retropolation (see after)
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Example of PLS: Domestic FCI with Multiple Targets

Source: IMF Staff
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Model with Six Partitions

Source: IMF Staff
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Data Partitioning in Practice

Important to keep in mind
It is absolutely crucial that the regressors generated with the
partitioning tool make economic sense
They should capture the largest movements, be in line with the
historical developments in the country, etc.
Spend time to customize the partition groups, add or remove
variables, detrend them, etc.
Avoid to partition with non-stationary variables: the partition might
end-up as a trend, which will create problems for the quantile
regressions (see after)
Uninformative regressors reduce the accuracy and relevance of
the model
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Data Partitioning in Practice : Rule of Thumb

1 As a general rule, don’t use more than 5 or 6 partitions. Else the
model will overfit and add too much parametric noise

2 Don’t throw a lot of heterogeneous variables in one partition: else
the partition will be difficult to interpret

3 Distinguish between fast-impact variables (typically spreads) and
slow-moving ones (quantities, leverage)

4 Distinguish when possible between domestic and foreign
variables: their dynamics are often different
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Example: Indonesia

Source: Indonesia IMF Selected Issues Papers (2019)
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Example: Singapore

Source: Singapore IMF Selected Issues Papers (2019)
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2nd Step: Quantile Regressions vs. OLS

Intuition
Most of the macrofinancial literature uses OLS regressions, focusing
on marginal impact on the mean. Density models allow to think about
the full distribution

Much richer policy analysis: some variables might not matter to
explain the dynamic on average, but might matter a lot in crisis
time (example: housing prices)

The density estimation model is a natural framework: looking at
conditional distribution and their implications

However, at this stage, we didn’t solve the problem of
identification: shocks to the partitions are supposed to be
reduced-forms (no joint dynamic among partitions)
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Quantile Regressions: Intuition

An OLS regression fits the conditional mean:

Y = βOLSX + ε ⇐⇒ E[Y |X] = β̂OLSX

For a given probability τ , a quantile regression fits the conditional
quantile at τ :

Y = βτX + ετ ⇐⇒ QY (τ |X) = β̂τX

β̂τ is the marginal effect of X on the conditional quantile of Y at
probability τ
Example: estimating a Mincer equation with quantile regressions.
How adding one year more of education improves the income for
rich people? For poor people? etc.
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Some Statistical Concepts

For a continuous random variable Y , the cumulative distribution
function (cdf) FY (y) is defined as FY (x) = P [Y ≤ x].
The unconditional quantile, QY (τ) at probability τ is defined as:
P [Y <= QY (τ)] = τ .
Hence, the quantile function is the inverse of the cdf:
QY (τ) = min{y ∈ R : τ ≤ FY (y)}
Intuitively, the quantile at 20% is the value QY (0.2) such that 20%
of the Y observations are below QY (0.2) and the rest above

NB: This presentation is simplified to the case where the cdf is well
defined. If not, use the concept of generalized inverse (infimum instead
of minimum)
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Quantile Regression vs. OLS

Source: www.datasciencecentral.com
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Linear Specification with Non-Linear Effects

GaR uses linear specification for the quantile regression:
Y = βτX + ετ

However, because the model estimates the quantile regressions
for different values of τ (e.g. 5%, 25%, 50%, etc.), the marginal
impact of X on Y is non-linear: it varies with the distribution of Y

Important Remark
A quantile regression is not a threshold regression: the variation is
in the quantile of Y , not of X
The interpretation of the coefficient is therefore: ”how an increase
by 1 unit on average of X impacts the quantile τ of Y ”
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Non-Linearities in Quantile Regressions Coefficients

Source: www.datasciencecentral.comLafarguette and Wang (2020) Growth-at-Risk: Theory 33



Quantile Regressions Output

Source: IMF Article IV (2018)
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3rd Step: From Empirical Conditional Quantiles to
Parametric Fit

In principle, we could estimate the empirical cdf simply by
interpolating and inverting the empirical quantile function
However, this might lead to very unsmooth distributions
The idea is therefore to parametrize a well-known distribution
so that its quantiles are as close as possible as the empirical
quantiles estimated by GaR
The tool uses a Tskew distribution for the fit, paramatrized with:

1 Location (the mode)
2 Scale (variance)
3 Kurtosis (’fatness’ of the tails) - also defined via the degrees of

freedom
4 Skewness (’asymmetry’)
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Skewed Distributions

Source: www.datasciencecentral.com
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Pros and Cons of Parametric Fitting

Pros
Parsimonious way to summarize the information (4 parameters)
Capture higher conditional moments, in particular skewness and
kurtosis: riche policy implications
Smooth the extreme tails
t distribution widely used in finance (fat tails)

Cons
Extra statistical layer with distribution fitting error, on top of the
quantile estimation error
Ignores potential bi-modality in the data (or more)
No clear asymptotic properties
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Fitted Distribution

Source: IMF Staff
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GaR Time Series

Source:
Adrian et al. (2019)

Lafarguette and Wang (2020) Growth-at-Risk: Theory 40



Constrained Optimization

Consistence with baseline or WEO forecasts
GaR estimates the full distribution. However, often a central
tendency forecast is available (WEO or authorities’ forecast)
The tool gives the possibility to forecast under the constraint that
the mode of the density coincides with an ad-hoc value (decided
by the user)

The program optimized under fixed location:

argmin
∑
τ∈Θ

||TskQ({loc, scale, skew, kurtosis}, τ)− Q̂Y (Yt+h, τ)||2

Note that the model is internally consistent: if the user imposes a mode far
away from the unconstrained mode, then the full distribution will be highly
distorted to accomodate user’s assumptions.
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Constrained Fit: on the Left

Source: IMF Staff
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Constrained Fit: on the Right

Source: IMF Staff
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Probability Integral Transform Test (PIT)

A probability integral transform is simply the evaluation of the cdf
of a random variable (Fx) on its own values (X).
Mathematically, the random variable Y = FX(X) is uniformally
distributed

Intuition
If the density forecast model is correctly specified, the PIT follows
an IID uniform distribution on the unit interval
The departure to the IID hypothesis can be quantified by the
Kullback-Leibler (1951) information criterion
Thus the test statistic measures the distance of a candidate model
to the unknown true model.
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Probability Integral Transform

Source: IMF Staff
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Scoring Tests

The literature on the topic is vast (cf. Timmerman et al., Handbook of
Economic Forecasting 2013). One intuitive way is to use scoring
rules, possibly asymmetric:

Intuition
Idea: was it the ex-ante probability of the ex-post realization?
Scores are usually taken in log-form: Sl(f̂ t; yt+h) = logf̂ t(yt+h)

Can give more weights to models which provide more accurate
density in the tails (risk models) than in the central tendency
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Ex-Ante Distributions and Ex-Post Realizations

Source: IMF Staff
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Logscore Across Time

Source: IMF Staff
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GaR Ex-Ante and Ex-Post Assessment

Source: IMF Staff
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