FX Interventions Rules for Central Banks A Risk-Based Framework

Romain Lafarguette, Ph.D. Amine Raboun, Ph.D.

Quants & IMF External Experts

romainlafarguette.github.io/ amineraboun.github.io/

Singapore Training Institute, 20 April 2023

This training material is the property of the IMF, any reuse requires IMF permission

1/43

1 Conceptual Framework

Quant Methods for Rule-Based and Discretionary FXI

- Fundamentally, for floating regimes, **FX interventions are about mitigating risk** (volatility risk, funding risk, risk of pass-through to inflation, etc.)
- Hence, **measuring and anticipating risk is critical**... and relevant both for discretionary and rule-based interventions
- While there is no consensus about rule vs discretion, rule-based interventions are better suited to offer a **consistent macro-risk management**
 - Macro risk derives from risk-taking behavior from market participants and international factors
 - Rules are among the best tools to effectively build a strategy geared towards tilting agents' behavior
 - Via signalling and moral-hazard mitigation

Contributions

- Design a rule to **address tail-risks** related to direct and indirect FX exposures in the economy
- Provides guidance on **when** to intervene ("triggers")
- Appropriate for **floating exchange rate regimes** with FX macrofinancial risks (e.g. dollarization)
- Consistently target **FX risk** in the economy
- A risk management framework for central banks' financial stability mandate: aligned with industry's practices in risk management

Desirable Properties of FXI Rules

Foreign Exchange intervention rules should be:

- Adaptative, depending on market conditions
- **Objective**, anchored to a risk tolerance level rather than an aribtrary FX level threshold
- Capture FX **non-linearities and asymmetries** between appreciation and depreciation
- Be easily operationalizable, and financially viable

We propose an FX intervention rule based on **Conditional** Value-at-Risk

Concept: Value-at-Risk FXI Rule

- Rather than using a fixed volatility rule (e.g. intervene if daily exchange rate varies by more than 2% compared to previous day)
- Use a **risk-based rule**: intervene when the daily exchange rate log-returns fall within the tails of the conditional distribution
- Measure the tail-risk via the concept of **Value-at-Risk** (the conditional quantile of the log returns distribution)
- The conditional distribution is estimated daily with a standard financial GARCH model and **varies with market conditions**
- The central bank decides on the **risk tolerance**: e.g. intervene in the tail at 1%, 5%, 10%, etc.

VaR FXI Rule

A Risk-Management Approach to FX Interventions

- Tail-risks hedge not always available: incomplete markets
- The central bank is transferring FX risk from the market to its balance sheet. It buys a risky asset (FX) and issues a risk-free asset (local currency)
- Provide a **public good** to address market failure. Leave a fix share of risk for the market to hedge
- Risk tolerance should depend on the **macrofinancial risk**
- The financial stability mandate of the central bank is properly formalized and quantified via VaR metric
- Especially efficient to support market development, especially on derivatives (typically FX forwards)

Main Features

- Allows flexible exchange rate to act as a shock absorber: more flexibility in crisis time => avoid overshooting
- No excessive interventions in crisis time, often ineffective and costly (exhaust FX reserves)
- No free insurance to the market: avoid moral hazard, foster the development of hedging market
- **(**) Prevent market speculation and windfall effects
- **6** Guarantees **fixed-frequency** interventions:
 - **Certainty** about interventions: the central bank can intervene with **larger amounts**, more efficient
 - Budget neutrality with symmetric risk preference
- **§** Financially optimized: buy/sell at the best expected price

Operational Implementation

- **Standard data requirements**, easily accessible for a central bank, can be customized
- Parsimonious GARCH model featuring **embedded heteroskedasticity**, **asymmetries** (appreciation/depreciation), **non-linearities** (exponential volatility) and parametric **density forecasting**
- We created a Python package, **free and open-source** (available on pypi and Github): estimation, forecasting, out-of-sample evaluation, optimization, benchmarking, etc. Results are **fully replicable**
- Can be used alongside other types of interventions: put auctions, NDF, etc.

Challenges

- Some central banks might be reluctant to use a VaR-rule: more difficult to communicate to the public
 - However, FXI occur on the wholesale FX market, where market participants are fully aware of the VaR concept
- Some policymakers might **prefer to keep discretion** over FXI
 - Trade-off: a transparent rule anchors better market expectations, under certain conditions maximize efficiency and strengthen central bank's independence

A Complementary Rule

- The VaR FXI rule is fundamentally a rule to intervene on the spot market to directly take risk out of the market
- Can easily be associated with other types of interventions, such as auctions of forwards or non-deliverables forwards (NDF).
- Auctions of NDF provides an insurance to the market without endangering the FX reserves of the central bank.
 - **But** require a relatively developped forward market and sophisticated market participants to operate
 - Supposes a relatively good arbitraging between the forward and spot market to impact the volatility on the spot
 - Doesn't help on funding issues (can be alleviated with spot interventions or swaps)
- VaR FXI interventions are done on the spot market. They have a direct impact on the market, provides funding in hard currency
 - **But** will impact the level of FX reserves of the central bank (at least, over the short-term)

Lafarguette (IMF STX)

Risk-Based FXI

The Framework Extends Beyond FXI triggers

- Can be used for **market monitoring** by measuring conditional volatility on the market (especially when implied volatility is not available)
- **2** Provide policy guidance for **discretionary interventions**
- Can be used for structural analysis on the FX markets, for instance to study the dynamic of capital flows as a function of conditional volatility
- Benchmark ex-post FX discretionary interventions (what was the risk level when the central bank intervened ?)
- We present below an application of the toolkit to the Mexican Peso to benchmark their interventions ex-post

Specification

- Non-linear, Exponential GARCH (EGARCH) model
- The dependent variable is the FX log-returns, $r_t = \log(\frac{e_t}{e_{t-1}})$, where e_t is the bilateral market exchange rate against the major currency (e.g. USD)
- Drift AR-X(1): $r_{t+1} = \alpha_d + \rho r_t + \beta X_{t+1} + \epsilon_{t-1}$
- Exponential volatility: $\log \sigma_{t+1}^2 = \omega + \beta g(r_t)$ where $g(r_t) = \alpha_v r_t + \gamma(|r_t| \mathbb{E}|r_t|)$
- Error term distribution $\epsilon_t = \sigma_t \varepsilon_t$, $\varepsilon_t \sim \text{TSK}(0, 1, \nu)$
- The forecasted conditional probability distribution function is defined as:

$$\hat{f}(r_{t+1}|r_t, X_{t+1}) = \text{TSK}(\hat{r}_{t+1}, \hat{\sigma}_{t+1}^2, \hat{\nu})$$

Estimation

- The GARCH estimation is standard and done with maximimum likelihood
- Selection of parameters is done via AIC/BIC criteria.
- Our Python package allows to flexibly select:
 - The set of exogeneous regressors
 - The number of lags
 - The volatility specification (exponential, RiskMetric, standard GARCH, etc.)
 - The distribution family of the error-terms (Gaussian, Student, Tskew, Generalized Gaussian, etc.)
- More complex models (e.g. copulas, non-parametric kernels, etc.) can be used within the same VaR framework. However, more difficult to understand and to implement

Exogeneous Regressors

- **§** FX microstructure: FX bid-ask spread (averaged over the day)
- **② CIP**: daily interest rate differential with the US Libor
- **6** Hedging costs: one-month forward exchange rate
- Past policy interventions: lagged amount of central bank FX intervention
- Global risk sentiment: The VIX, implied volatility on the S&P 500
- **6** Global FX factor: The EURUSD exchange rate

Regression Table

	Microstructure	CIP	Dollar move	Risk Appetite	Baseline
Intercept Lag FX log returns Bid ask abs Min max abs Forward points first difference Interbank rate vs Libor EURUSD log returns VIX first diff	-2.34 -0.07*** 5.67 35.62 23.29***	-2.29 -0.08*** 24.45 34.68 17.79*** 33.61***	-1.74 -0.08*** -33.58 33.32 26.33*** 39.43*** -0.14***	-2.55 -0.08*** -2.68 34.45* 19.82*** 34.75*** -0.17*** 15.67***	-1.63 -0.08*** 3.22 26.2 19.44*** 33.86*** -0.16*** 15.37***
FX intervention dummy lag Oil prices log returns Omega Alpha Gamma Beta Nu Lambda R2 R2 adjusted Number of observations	$\begin{array}{c} 0.13^{***}\\ 0.17^{***}\\ 0.07^{***}\\ 0.98^{***}\\ 8.33^{***}\\ 0.08^{*}\\ 5.8 \ \%\\ 5.8 \ \%\\ 5986 \end{array}$	$\begin{array}{c} 0.13^{***}\\ 0.17^{***}\\ 0.06^{***}\\ 0.99^{***}\\ 8.67^{***}\\ 0.07\\ 6.7 \ \%\\ 6.6 \ \%\\ 5986 \end{array}$	0.12^{***} 0.16^{***} 0.99^{***} 8.92^{***} 0.09^{*} 10.4% 10.3% 5682	$\begin{array}{c} 0.11^{***}\\ 0.16^{***}\\ 0.5^{***}\\ 0.99^{***}\\ 8.71^{***}\\ 0.07^{*}\\ 27.3 \ \%\\ 27.2 \ \%\\ 5682 \end{array}$	$\begin{array}{c} 2.23 \\ -0.02^{***} \\ 0.12^{***} \\ 0.15^{***} \\ 0.05^{***} \\ 0.99^{***} \\ 8.54^{***} \\ 0.08^{***} \\ 27.6 \\ \% \\ 27.5 \\ \% \\ 5680 \end{array}$
Significance *10%, **5%, ***1%					

Formalization of the Intervention Rule

• Consider the estimated conditional distribution of the exchange rate log returns r_t defined as

$$\mathbb{P}[r_t \leqslant x] = \int_{-\infty}^x \hat{f}(r_t | r_{t-1}, X_t) dr_t$$

• The Conditional Value-at-Risk at threshold τ is simply defined as the conditional $\tau\text{-quantile}$

$$Q(r_t, \tau) \equiv \mathbb{P}[r_t \leqslant Q(r_t, \tau)] = \tau, \text{ for } \tau \in (0, 1)$$

• The FXI intervention rule is a simple boolean rule, based on two risk-thresholds $(\underline{\tau}, \overline{\tau})$, for depreciation and appreciation, potentially risk-symmetric $(\overline{\tau} = 1 - \underline{\tau})$

$$\mathbb{1}\left[\left\{r_t \leqslant \ Q(r_t,\underline{\tau})\right\} \cup \left\{r_t > \ Q(r_t,\overline{\tau})\right\}\right]$$

Dynamics of the Mexican Peso against USD

Historical FX level

Conditional In-Sample Volatility of the Mexican Peso

2 Model

Forecasting

- Real-time forecasting based on market conditions
- Estimate the GARCH and derive the forecasted drift and volatility
- Infer the **full-fledged conditional distribution** of FX log returns for any point in time
- Optimize the choice of the mean (drift) and density models, specifically:
 - The model on the mean/drift
 - The model for the conditional variance
 - The distribution of the perturbations, that determines the whole distribution

Lafarguette (IMF STX)

Risk-Based FX

STI, 20 April 2023

24/43

Fan Chart

Fan chart of predictive FX log returns (1, 5, 10, 25, 75, 90, 95th conditional quantiles)

Lafarguette (IMF STX)

Risk-Based FX

VaR FXI Rule

Conditional Cumulative Distribution Function

Conditional Exceedance

Log Returns and Conditional VaR Exceedance at 5 Percent (green square: below VaR 2.5 percent, red dot: above VaR 97.5 percent)

Lafarguette (IMF STX)

Risk-Based FX

STI, 20 April 2023 28 / 43

Density Evaluation

In Practice

- In practice, optimizing **out-of-sample** a density model is complex
- The package we designed handles the optimization seamlessly (see the Zigzag discussed previously)
- It outputs the optimal functional forms and parameters
- Offers the possibility to optimize based on the performance **on the tails**
 - Since FX Interventions will occur in the tails, it matters that the model performs well on the tails

Zig-Zag Output

KS PIT test KS PIT test pvalues Rossi Shekopysan PIT test right tail tails log score left tail log score right tail log score

volatility model

Constant	False	0.0	False	False	-5.04257	-1.566547
ARCH	False	0.0	False	False	-5.009953	-1.459077
RiskMetric	False	0.000547	False	False	-4.986837	-1.467944
GARCH	False	0.000742	False	False	-4.980809	-1.470709
GJR-GARCH	False	0.005783	False	False	-4.974227	-1.4876
EGARCH	False	0.000092	False	False	-4.97205	-1.485041
EWMA	False	0.024125	False	False	-4.95291	-1.506733
RiskMetric	False	0.010851	False	False	-4.879082	-1.604971
GJR-GARCH	False	0.039789	False	False	-4.875905	-1.62644
EGARCH	False	0.026603	False	False	-4.873035	-1.629643
GARCH	False	0.012535	False	False	-4.867998	-1.621192

How to Select a Model from our Package?

- Look for well-specified density models: distributions that can NOT reject the PIT hypothesis (can not reject the hypothesis that the PIT is uniformly distributed). Want high p-values
- Ideally, should be well-specified in the tails (PIT tails) as well as in the bell part
- Then among the well-specified density models, choose the best performing model: the one with the best logscore
- What if all models fail the PIT test? If they are all mis-specified?Directly go for the best performing one
- Observation: why focusing on well-specified models? Why not only focusing on the best performing ones?
 - Mis-specified models indicate a consistent bias
 - They can perform well over short-periods but it is likely that they might strongly underperform in the future

Lafarguette (IMF STX)

Risk-Based FXI

Best Out-of-Sample Model from the Package

mean optim = dgo.optimize mean()

G

Optimizing the Mean model. step 1: exog l

100% 255/255 [00:21<00:00, 11.97it/s]

Best Out-Of-Sample combination of exogenous variables: Bid ask abs.Forward points first difference.EURUSD log returns.VIX first diff.Oil prices log returns Optimizing the Mean model. step 2: number of lags

100% | 10/10 [00:00<00:00, 11.14it/s]

Best Out-Of-Sample number of lags: 0

vol_dist_optimization = dgo.optimize_vol_distrib() vol dist optimization

100% 28/28 [03:17<00:00, 7.04s/it]

Best Out-Of-Sample Volatility Model: RiskMetric Best Out-Of-Sample Distribution Family: SkewStudent

Lafarguette (IMF STX)

STI, 20 April 2023 33/43

5 Policy Uses

Bank of Mexico FX Interventions Setup

- The Banco Mexico (BM) implemented both ex-ante, transparent FX auctions and discretionary-rate auctions
- Different reservation rates:
 - **Rule-based setting**: BM operated an auction every day with a pre-announced **a minimum rate** for eligible bids
 - **Discretionary setting**: the auction was organized at the BM's discretion without reservation rate
- Often, no demand for the ruled-based auction as the market rate was below the reservation rate
- No-minimum price auctions could be motivated by other considerations than the exchange rate level
- What was the risk level when the FXI occurred?

Rule-Based Benchmarking

Rule-Based Benchmarking: Risk-Level

Discretion-Based Benchmarking

Discretion-Based Benchmarking: Risk-Level

Benchmarking Results

• FX auctions with ex-ante minimum price ("rule-based")

- The minimum price auctions did not fully prevented BM to intervene outside of the tails of the conditional distribution
- In that respect, VaR-based intervention would have been better to mitigate tail-risks
- FX auctions with no ex-ante minimum price ("discretion-based")
 - $\,\cdot\,$ No minimum prices interventions occurred at almost any risk level
 - Discretion triggers are not identifiable based on risk

Policy Uses

- Useful for floating rate regimes to **operationalize their financial stability mandate** with a risk-management framework
- The VaR-based rule could be considered **as one option** to improve the rules that central banks currently use
- Let the nominal exchange rate acts as a **shock absorber**
- Could be used to accompany the **transition to exchange rate flexibility**, with gradually less and less interventions
- More generally, could be used by central banks for **market and risk monitoring**

Alternative Models: Benchmarking

	\mathbf{PIT}	Logscore diff against Baseline	Diff pvalue
Baseline Unconditional	Pass		
Quantile Reg Gaussian EGARCH TSkew GARCH Gaussian GARCH	Fail Fail Fail	1.54 1.768 1.755	$0.938 \\ 0.961 \\ 0.96$