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Challenges in estimating volatility
Daily volatility is unobserved, and can not be derived from the daily
returns Rt because there is only one observation in a trading day t

Volatility of price returns is not static, It changes frequently for several
reasons

Why does volatility change?

News Announcements: Macroeconomic and earnings announcement.
As new information arrives, uncertainty rises regarding interpreting it
and reshuffling portfolios.

State of Uncertainty: Brexit, Trump election, Covid-19, SVB

Illiquidity: Price movement upon taking directional bets on illiquid
assets is high

Volatility Feedback: Market-Makers behavior, fleeing the order book
when volatility increase (when it matters the most)

Leverage:An price declines, companies become more leveraged
(debt-to-equity ratio up) and riskier
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Volatility Estimates

1 Realized Volatility, but on what window ?

σ̂ “

g

f

f

e

1
T

T
ÿ

t“1
prt ´ µ̂q

2 Implied volatility the volatility which when input in an option
pricing model (such as Black-Scholes) will return the market price
of the option. Example: the CBOE Volatility Index (ticker: VIX).

3 High Frequency Data Estimators. The realized volatility is
computed as the sum of squared intraday returns (Andersen and
Bollerslev, 1998).

4 The Conditional Volatility issued from dynamic models such as
the ARCH and GARCH type models Etrσ

2
t`1s
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Stylized Facts of Financial Time series

How ARCH/GARCH models cover the properties of financial time
series?

1 The returns are stationary
2 Absence of autocorrelations
3 Heavy tails
4 Asymmetry
5 Volatility clustering
6 Aggregational Gaussianity
7 ARCH effect
8 Leverage effect
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ARCH Models

The ARCH model has been introduced by Engle (1982)

ARCH = AutoRegressive Conditional Heteroskedasticity
Robert F. Engle Nobel Prize 2003

The squared return follows an autoregressive model.
The term heteroscedasticity refers to a time-varying variance.
In an ARCH model, it is the conditional variance (and not the
variance itself) that changes with time, in a specific way,
depending on the available data.
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ARCH Models

Definition: ARCH(q)
The process Xt, t P Z is said to be an ARCH(q) process, if

Xt “ Ztσt

where Zt is a sequence of independent and identically distributed
(i.i.d.) random variables with EpZtq “ 0 and VpZtq “ 1, and σt is a
non-negative process such that

σ2
t “ α0 `

P
ÿ

i´1
αiX

2
t´i

with α0 ą 0, αi P R, @i ă P, αp P R˚ and
řP

i´1 αi ă 1
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Focus on ARCH(1)

Definition: ARCH(1)
The process Xt, t P Z is said to be an ARCH(1) process, if

Xt “ Ztσt

where Zt is a sequence of independent and identically distributed
(i.i.d.) random variables with EpZtq “ 0 and VpZtq “ 1, and σt is a
non-negative process such that

σ2
t “ α0 ` α1X2

t´1

with α0 ą 0 and 0 ď α1 ă 1
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Conditional Variance

Definition
The process σ2

t corresponds to the conditional variance of Xt

VpXt|Ft´1q ” VpXt|Xt´1q “ σ2
t

where Ft´1 ” Xt´1 “ tXt´1, Xt´2, ...u is the information set available
at time t ´ 1

Some authors denote the conditional variance by ht, with

Xt “ Zt

a

ht

ht “ α0 ` α1X2
t´1
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Interpretation
Consider an ARCH(1) process

Xt “ Ztσt

σ2
t “ α0 ` α1X2

t´1

Then we have

VpXt|Xt´1q “ VpZtσt|Xt´1q “ σ2
t VpZt|Xt´1q “ σ2

t VpZtq “ σ2
t

Given the past information Xt´1, the conditional variance
σ2

t “ α0 ` α1X2
t´1 is deterministic, since xt´1 is a constant

The process Zt, t P Z is an IID noise, so VpZt|Xt´1q “ VpZtq i.e.
there is no memory in Zt

The normalization VpZtq “ 1 is not a restriction: the scaling
implied by any other variance would be absorbed by the
parameters α0 and α1
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Key properties of ARCH models

If Xt, t P Z has an ARCH(1) representation with Gaussian innovations,
then

1 X2
t has an AR(1) representation

2 Xt is a martingale difference
3 Xt is a stationary process under some conditions on the parameters
4 Xt is (unconditionally) Homoscedastic
5 Xt is conditionally Heteroscedastic
6 The (marginal) distribution of Xt is leptokurtic
7 The conditional distribution of Xt is normal
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Property 1:
Definition
If tXt, t P Zu has an ARCH(1) representation, with

Xt “ Ztσt

σ2
t “ α0 ` α1X2

t´1

If tX2
t , t P Zu has an AR(1) representation, with

X2
t “ α0 ` α1X2

t´1 ` νt

where νt is an innovation process

Erνt|Xt´1s “ 0

Consequences X2
t and X2

t´k are correlated ñ ARCH effect

ρk “ CorrpX2
t , X2

t´kq ‰ 0
especially for small values of k
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Property 2:

Definition
if tXt, t P Zu is an ARCH(1) process, then it is a martingale difference

ErXt|Ft´1s ” ErXt|Xt´1s “ 0

Consequences
The very best (linear or nonlinear) predictor of Xt based on the
available information at time t ´ 1 1 is simply the trivial predictor,
namely the series mean, 0.
In terms of point forecasting of the series itself, then, the ARCH
models offer no advantages over the linear ARMA models.
This property implies that CovpXt, Xt´kq “ 0 @k ‰ 0, i.e that
the process Xt has no memory
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Innovation ARCH model Output
Zt i.i.d noise Xt “ Ztσt Xt is martingale difference

No correlation σ2
t “ α0 ` α1X2

t´1 No correlation
between Zt and Zt´k between Xt and Xt´k

but CovpX2
t , X2

t´kq ‰ 0

ARCH effect
The daily squared returns often exhibit significant correlations. These
autocorrelations are often referred to as an ARCH effect.

Absence of autocorrelation
The autocorrelation of asset returns Rt are often insignificant, except
for very small intraday time scales (« 20 minutes) for which
microstructure effects come into play.
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Property 3:

Definition
if tXt, t P Zu is an ARCH(1) process, then its two first unconditional
moments are finite and constant

ErXts “ 0, VpXtq “
α0

1 ´ α1
, CovpXt, Xt´kq “ 0 @k ‰ 0

with α0 ą 0 and 0 ď α1 ă 1
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Consequences

An ARCH(1) process is unconditionally homoscedastic
Unconditional Variance VpXtq “ α0

1´α1
“ cst @t

An ARCH(1) process is conditionally heteroscedastic
Conditional Variance VpXt|Ft´1q “ σ2

t “ α0 ` α1X2
t´1 varies

with Ft´1

An ARCH(1) process is (weakly) stationary
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Property 4:
Definition
if tXt, t P Zu is an ARCH(1) process with Gaussian innovations Zt

i.i.d
„ N p0, 1q,

then, its unconditional and conditional Kurtosis coefficients are equal to

KpXt|Xt´1q “
EpX4

t |Xt´1q

VpXt|Xt´1q
2 “ 3

KpXtq “
EpX4

t

VpXtq2 “ 3
˜

1 ´ α2
1

1 ´ 3α2
1

¸

ą 3 if α1 ă

c

1
3

Consequences
The return distribution often exhibits heavier tails than those of a
normal distribution.
Even if the innovation Zt has a normal distribution, the marginal
distribution of Xt is not Gaussian
If the innovation Zt has a normal distribution, the conditional
distribution of Xt is Gaussian. Xt|Xt´1 „ N p0, σ2

t q
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ARCH models Properties Summary
if Xt, t P Z is an ARCH(1) process with Gaussian innovation, then

Propertry Consequences / Interpretation

P1 X2
t is an AR(1) process ARCH effect: CovpX2

t , X2
t´kq ‰ 0 for "small" k

P2 Xt is a martingale
difference

ErX ´ t|Xt´1s “ 0 and
CovpXt, Xt´kq “ 0 @k ‰ 0

ErXts “ 0, tXtu is stationary,
P3 VrXts “

α0
1´α1

, unconditionally homoscedastic,
VrXt|Xt´1s “ σ2

t and conditionally heteroscedastic

KrXts ą 3, The ARCH model generates leptokurtosis,

P4 KrXt|Xt´1s “ 3 The marginal distribution of Xt is not
Gaussian,
The conditional distribution of Xt is
Gaussian
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ARCH(1) models fits most of the stylized facts of
financial series

The properties of the ARCH(1) allow to capture most of the stylized
facts of financial data (cf. Chapter 1)

1 The returns are stationary ñ Xt is stationary
2 Absence of autocorrelations ñ Xt is a martingale difference
3 Heavy tails ñ KpXtq may be larger than 3 given the value of α1
4 Asymmetry
5 Volatility clustering ñ CovpX2

t , X2
t´kq ‰ 0

6 Aggregational Gaussianity ñ The marginal distribution of Xt

is not normal
7 ARCH effect ñ Xt

2 has an AR(1) representation and
CovpX2

t , X2
t´kq ‰ 0

8 Leverage effect
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Weaknesses of ARCH Models

Tsay (2002) identifies three main limits of the ARCH models.
1 The model assumes that positive and negative shocks have the

same effects on volatility because it depends on the square of the
previous shocks. In practice, the return of a financial asset
responds differently to positive and negative shocks.

2 The ARCH model is rather restrictive. For instance, the fourth
moment EpX4

t q exists only if α2
1 ă 1

3
3 The ARCH model does not provide any insight for understanding

the source of volatility. It only provides a mechanical way to
describe the behavior of the conditional variance. It gives no
indication of what causes such behavior to occur.
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Building an ARCH model
Denote by Rt the daily return of an asset or a portfolio at time t.

Rt “ µt
loomoon

conditional
mean model

` ϵt
loomoon

innovation
pmartingale diffq

ϵt “ Ztσt

σ2
t “ α0 `

P
ÿ

i´1
αiX

2
t´i

loooooooomoooooooon

conditional
variance model

follows the structure of a (conditional) volatility model

µt ” EpRt|Ft´1q “ µtpRt´1; θq

σ2
t ” VpRt|Ft´1q “ σ2

t pRt´1; θq

where θ denotes the set of parameters for the conditional mean and
variance and µt is typically an ARMA-type model .
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Example

Example ARMA(1,1)-ARCH(1)
The process tRt, t P Zu has an ARMA(1,1)-ARCH(1) representation if

Rt “ ϕ0 ` ϕ1Rt´1 ` θ1ϵt´1 ` ϵt

ϵt “ Ztσt

σ2
t “ α0 ` α1ϵ2

t´1

where Zt is a sequence of i.i.d. variables with EpZtq “ 0 and VpZtq “ 1.
We have

µt “ EpRt|Ft´1q “ ϕ0 ` ϕ1Rt´1

σ2
t “ VpRt|Ft´1q “ α0 ` α1ϵ2

t´1

and θ “ pϕ0, ϕ1, θ1, α0, α1q
1 is the vector of parameters to estimate
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Model Checking
For an ARCH model, the standardized innovations Zt “ ϵt

σt
are

i.i.d. random variates (following either a standard normal or
Student-t distribution).
Therefore, one can check the adequacy of a fitted ARCH model by
examining the series of standardized residuals

Ẑt “
ϵ̂t

σ̂t

Tsay (2002) recommends three types of tests on the series tẑtu
T
t“1

1 The Ljung-Box Q-statistics of ẑt can be used to check the
adequacy of the mean equation.

2 The Ljung-Box Q-statistics of ẑt
2 can be used to check the

adequacy of the volatility equation.
3 The skewness, kurtosis, and QQ-plot of ẑt can be used to check

the validity of the distribution assumption on Zt.
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Forecasting
We have to distinguish:

The forecasts on the series Rt itself (typically the returns).
The forecasts on the volatility (or the variance) of Rt.

Forecasting of the series Rt

The best linear forecast of Rt given the information set Ft´1 will be no
different with or without an ARCH error

Example AR(1)-ARCH(1)

Rt “ ϕ0 ` ϕ1Rt´1 ` ϵt

ϵt “ Ztσt, Zt
i.i.d
„ N p0, 1q

σ2
t “ α0 ` α1ϵ2

t´1

then, the conditional variance forecast at horizon h = 1 is given by

σ̂2
t`1|t “ VpRt`1|Ftq “ α0 ` α1ϵ2

t´1 “ α0 ` α1 pRt ´ ϕ0 ´ ϕ1Rt´1q
2
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GARCH Models

Due to the large persistence in volatility, ARCH models often require a
large p to fit the data. A more parsimonious specification is provided
by GARCH models.

GARCH = Generalized AutoRegressive Conditional
Heteroskedasticity

Bollerslev, T. (1986)
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Definition: GARCH Model
The stochastic process tϵt, t P Zu is said to be a GARCH(p,q) process
if:

ϵt “ Ztσt

where Zt is a sequence of i.i.d variables with EpZtq “ 0 and VpZtq “ 1,
and σt is a non-negative process such that:

σ2
t “ ω `

p
ÿ

i“1
αiϵ

2
t´i `

p
ÿ

i“1
βiσ

2
t´i

with ω ą 0, @ i, pαi, βiq P R`,2 and
řp

i“1 αi `
řp

i“1 βi ă 1
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GARCH: Intuition

The conditional variance of a GARCH(p, q) depends on:
§ The first p lag of the ϵ2

t (e.g. the squared error terms)
§ The first q lag of the conditional variance σ2

σ2
t “ ω `

p
ÿ

i“1
αiϵ

2
t´i

loooomoooon

ARCH Components

`

p
ÿ

i“1
βiσ

2
t´i

loooomoooon

GARCH components

The parameters αi are often called the ARCH parameters

The parameters βi are often called the GARCH parameters
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GARCH(1, 1)

Tip
GARCH(1,1) specifications are generally sufficient to capture the
dynamics of the conditional variance

Special Case: GARCH(1, 1)
The process tϵt, t P Zu is said to be a GARCH(1,1) if:

ϵt “ Ztσt

where Zt is a sequence of i.i.d variables with EpZtq “ 0 and VpZtq “ 1,
and σt is a non-negative process such that:

σ2
t “ ω ` αϵ2

t´1 ` βσ2
t´1

with ω ą 0, α ě 0, β ě 0 and α ` β ă 1
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Conditional Variance Persistences
The conditional variance σ2

t “ ω ` αϵ2
t´1 ` βσ2

t´1 depends on two effects:
§ An intrinsic persistence effect through the first lag of the

conditional variance
§ An extrinsic persistence effect

Following a positive (or negative) shock at time t-1, the conditional
variance at time t increases (impact effect) and thus it has an impact on
ϵt “ Ztσt

shock zt´1 ą 0 ñ ϵt´1 Ò ñ σt Ò . . .

Starting from the next period (at time t), the effect of the shock at t ´ 1
on the conditional variance at t ` 1 passes through the conditional
variance at time t (intrinsic persistence)

... ñ σt Ò ñ σ2
t`1 Ò

The overall effect of a shock can be decomposed into a
contemporaneous effect, which depends on α and a persistence
effect that depends on β

Lafarguette & Raboun (IMF STX) Volatility Modeling STI, 17 April 2023 32 / 62



Remarks

It is often the case that:
1 The sum of the estimates of α and β are generally close (but below

1)

2 The estimate of β is generally greater than the one of α

3 The estimate of β is generally larger than 0.90 for daily returns
and the estimate of α is below 0.1

Be careful: it is not a general rule, just an observation.
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GARCH Properties
GARCH process properties are similar to those of an ARCH process.

1 ARCH properties
2 ϵ2

t has an ARMA representation

ARMA representation
If tϵt, t P Zu has a GARCH(p,q) representation with:

ϵt “ Ztσt

σ2
t “ ω `

p
ÿ

i“1
αiϵ

2
t´i `

p
ÿ

i“1
βiσ

2
t´i

the tϵ2
t , t P Zu has a ARMA(max(p,q), q) representation with:

ϵ2
t “ ω `

p
ÿ

i“1
pαi ` βiqϵ2

t´i ` νt ´

p
ÿ

i“1
βiνt´i

with ν “ ϵ2
t ´ σ2

t is an innovation process, i.e Epνt|Ft´1q
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Estimation

1 The set of parameters θ of an ARMA-GARCH model is estimated
by Maximum Likelihood (ML) or Quasi Maximum Likelihood
(QML).

2 When the model is estimated by ML, the most often used
distributions for Zt are:

1 The normal distribution, Zt
i.i.d
„ N p0, 1q. IMPORTANT: the

normality assumption on Zt does not imply that the return Rt has a
normal (marginal) distribution.

2 The Student t-distribution, Zt
i.i.d
„ tpνq , which is symmetric and

leptokurtic (if ν is "small").
3 The skewed Student t-distribution, Zt

i.i.d
„ Skewed tpδ, νq, which

is asymmetric (if δ ‰ 1) and leptokurtic (if ν is "small").
4 The Generalized Error Distribution (GED), Zt

i.i.d
„ GEDpνq,

which is symmetric and leptokurtic (if ν < 2).
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Remark

Why consider non-Gaussian distributions for the innovation Zt?
1 The use of a leptokurtic distribution for Zt allows to increase the

kurtosis of Rt.

Kurtosis of a GARCH process “ kurtosis generated by the model
` kurtosis of the innovation Zt

The kurtosis generated by the model dynamic is generally not sufficient
to reproduce the level of kurtosis observed in the financial returns.

2 The use of a skewed distribution for Zt allows to reproduce the
skewness observed in the distribution of the financial returns.

Skewed distribution for Zt ñ Skewed distribution for Rt
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Asymmetric GARCH models

The GARCH model assumes that positive and negative shocks
have the same effects on volatility because it depends on the
square of the previous shocks.
In practice, the return of a financial asset responds differently to
positive and negative shocks.
The GARCH model does not allow to capture the leverage
effect.
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Asymmetric GARCH models

Stylized Fact 8: Leverage Effect
Asset returns are negatively correlated with the changes in their
volatilities: this negative correlation is called the leverage effect

As asset prices decline, companies become more leveraged
(debt-to-equity ratios increase) and riskier, and hence their stock
prices become more volatile.
On the other hand, when stock prices become more volatile,
investors demand high returns, and hence stock prices go down.
Many asymmetric GARCH models have been proposed:
GJR-GARCH, TGARCH, EGARCH, APARCH,
VSGARCH, QGARCH, LSTGARCH, ANSTGARCH, etc.
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GJR-GARCH

One of the most often used asymmetric models is the GJR-GARCH
model, where "GJR" stands for Glosten, Jagannathan, and Runkle
(1993).

Definition
The process tϵt, t P Zu is to be a GJR-GARCH(1,1) process, if

ϵt “ Ztσt

where Zt is i.i.d with EpZtq “ 0 and VpZtq “ 1, and

σ2
t “ w ` αϵ2

t´1 ` γIpϵt´1ą0qϵ
2
t´1 ` βσ2

t´1

with w ą 0, α ą 0, β ą 0, γ P R and where Ip.q is the indicator
function that takes a value 1 if the condition is true and 0 otherwise.
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GJR-GARCH Interpretation

The term ϵt can be interpreted as a shock (surprise) on the return,
since

ϵt “ Rt ´ µt “ Rt ´ EpRt|Ft´1q

In a GJR-GARCH model, the influence of the past return shock
ϵt on the current conditional variance σ2

t depends on its sign

σ2
t “ w ` αϵ2

t´1 ` γIpϵt´1ą0qϵ
2
t´1 ` βσ2

t´1

Bσ2
t

Bϵ2
t´1

“

"

α ` γ ifϵt´1 ă 0
α otherwise

*

.

A leverage effect implies that γ ą 0, i.e. the increase in volatility
caused by a negative return is larger than the appreciation due a
positive return of the same magnitude.
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TGARCH model

The TGARCH, where "T" stands for Threshold, is an
asymmetric GARCH model designed to capture the leverage effect.
The TGARCH is similar to the GJR model, different only because
of the use of the conditional volatility, instead of the variance,
in the specification.
The TGARCH has been introduced by Zakoian (1994).
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TGARCH

Definition
The process tϵt, t P Zu is to be a TGARCH(1,1) process, if

ϵt “ Ztσt

where Zt is i.i.d with EpZtq “ 0 and VpZtq “ 1, and
b

σ2
t “ w ` α`ϵt´1Ipϵt´1ą0q ` α´ϵt´1Ipϵt´1ă0q ` β

b

σ2
t´1

with pw, α`, α´, βq P R4 and Ip.q is the indicator function
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TARCH Interpretation

One advantage of the TGARCH is that it does not require any
positivity constraints on the parameters, since we have
@pw, α`, α´, βq P R4

σt “

ˆ

w ` α`ϵt´1Ipϵt´1ą0q ` α´ϵt´1Ipϵt´1ă0q ` β
b

σ2
t´1

˙

ě 0

The TGARCH allows to capture an asymmetry between
positive and negative shocks, as

Bσt

Bϵt´1
“

"

α´ ifϵt´1 ă 0
α` otherwise

*

.

The leverage effect implies that |α´ ą α`|, i.e. the increase in
volatility caused by a negative return is larger than the
appreciation due to a positive return of the same magnitude
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EGARCH model

"E" stands for Exponential. The EGARCH has been introduced
by Nelson (1991).
It was designed to capture both (1) the asymmetric effects and (2)
the effects of "big" shocks.

Definition
The process tϵt, t P Zu is to be a EGARCH(1,1) process, if

ϵt “ Ztσt

lnpσ2
t q “ w ` α Zt´1 ` γ p|Zt´1| ´ Ep|Zt´1|qq ` β lnpσ2

t´1q

with pw, α, β, γq P R4 and where Zt is i.i.d with EpZtq “ 0 and
VpZtq “ 1,
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EGARCH Interpretation

GARCH Model
ϵt “ Ztσt

σ2
t “ w ` α ϵ2

t´1
loomoon

depends onϵt´1

`βσ2
t´1

EARCH Model
ϵt “ Ztσt

lnpσ2
t q “ w ` αZt´1 ` γ p|Zt´1| ´ Ep|Zt´1|qq

looooooooooooooooooomooooooooooooooooooon

depends on the standardized errorZt´1

`βlnpσ2
t´1q
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EGARCH Interpretation

The term p|Zt´1| ´ Ep|Zt´1|qq measures the magnitude of the
(positive or negative) shock
If the parameter γ is positive, the "big" (compared to their
expected value) shocks have a stronger impact on the variance
than the "small" shocks
The EGARCH model captures the asymmetric effects between
positive and negative shocks on the returns, since

Bσt

Bϵt´1
“

"

γ ´ α ifzt´1 ă 0
γ ` α otherwise

*

.

The leverage effect, i.e. the fact that negative shocks at time
t ´ 1 have a stronger impact on the variance at time t than
positive shocks, implies that α ă 0
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Daily returns with EGARCH model
Example EGARCH
Consider AR(1)-EGARCH(1,1) with Gaussian innovation for the
returns tRt, t P Zu

Rt “ ϕ0 ` ϕ1Rt´1 ` ϵt

ϵt “ Ztσt

lnpσ2
t q “ w ` α Zt´1 ` γ

˜

|Zt´1| ´

c

2
π

¸

` β lnpσ2
t´1q

or equivalently

lnpσ2
t q “ w ` α

ˆ

ϵt´1
σt ´ 1

˙

` γ

˜

|
ϵt´1

σt ´ 1 | ´

c

2
π

¸

` β lnpσ2
t´1q

with Zt i.i.d N p0, 1q. The vector of parameters to be estimated is
θ “ pϕ0, ϕ1, w, α, γ, βq1
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VaR: Intuitive Definition

Definition
The value at risk (VaR) defined for a hedge ratio α % corresponds to
the quantile of order α of the distribution of profits and losses (P&L)
associated with the holding of an asset or a portfolio of assets over a
given period.

Remark: VaR is generally negative (a loss) in a P&L representation.
For simplifying, we denote the VaR as a positive value by considering
the opposite of the quantile
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Value-At-Risk of a Normal Distribution
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VaR: Formal Definition
Definition
For a hedge rate of α%, the Value-at-Risk, noted V aRtpαq, corresponds to the
opposite of the fractile of order α of the distribution of profits and losses
(P&L)

V aRtpαq “ ´F ´1
Rt

pαq

where FRt
denotes the cumulative distribution function associated with the

density function fRt
p.q

Sometimes the Value-at-Risk is expressed as a function of confidence
level. VaR at hedge rate 1% will be Var(99%)

V aRp1 ´ αq “ ´F ´1
Rt

pαq

the probability of observing a loss greater than the VaR over the holding
period is equal by definition to the coverage rate:

P rrRt ą ´V aRtpαqs “

ż ´V aRtpαq

´8

fRt
prqdr “ α
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VaR: Specification

The definition of Value-at-Risk is based on 3 elements
1 The distribution of profit and loss (P&L) of the portfolio or the

asset
2 Level of confidence (or equivalently the hedge rate α)
3 The holding period of the asset (or the risk horizon)
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Conditional Value-at-Risk
We define the conditional distribution of P&L, based on a set of
information available at time t, denoted as Ωt

fRt
pr|Ωtq

the conditional distribution may change through time, but we usually
consider the case of invariant conditional density (given the explanatory
variables)

FRt
pr|Ωq “ FRpr|Ωq @t

Definition
For a hedge rate of α%, the conditional Value-at-Risk to a set of information
Ωt, noted V aRtpα|Ωtq, equals to the opposite of the fractile of order α of the
P&L conditional distribution

V aRtpα|Ωtq “ ´F ´1
Rt

pα|Ωtq

where FRt
pr|Ωtq is the cumulative distribution function associated with the

conditional density function fRt
pr|Ωtqq
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Estimation methods

Challenge
Theoretically, at each date t, the return Rt is a random variable admitting a
distribution fRt

p.q and a fractile α. However, we have only one observation rt

of this distribution. From this single realization, without any additional
hypothesis, it is impossible to estimate the quantiles of the distribution
fRt

p.q at date t, i.e. the VaR

Several estimation methods have been proposed

Non-parametric Estimation: No parametric distribution of P&L is
imposed a priori. Historical Simulation(HS), Weighted HS,
Filtered HS

Semi-parametric Estimation: CAViaR method, Extreme Values
Theory

Parametric Estimation: ARCH, GARCH RiskMetrics
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Parametric Estimation

Motivation For any elliptical distribution, the VaR forecast is a linear
transformation of the variance (volatility) forecast. Predicting the
variance allows to predict the VaR

Garch Model
Under the normal distribution hypothesis of conditional P&L, the VaR
forecast for hedge rate α is given by

V aRt`1|tpαq “ ´µ ´
a

ht`1Φ´1pαq

where ht`1 is the conditional variance of returns derived from the
GARCH model
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Parametric Estimation
RiskMetrics
Developed by JP Morgan in the 90s. The forecasted conditional VaR
for the hedge rate α is

V aRt`1|tpαq “ ´µ ´ htΦ´1pαq

where µ is the expected return and ht is the conditional variance

ht “ λht´1 ` p1 ´ λqr2
t´1

where λ is a decay parameter (generally fixed to 0.97)

The conditional variance in RiskMetrics follows a EWMA
(Exponential Weighted Moving Average) type process: The
forecasted variance is a linear function of past innovations and
past variance
RiskMetricss is a special case of GARCH
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Limites of the Value-at-Risk

1 This risk measure does not give any information on losses beyond
the VaR
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Limites of the Value-at-Risk

1 This risk measure does not give any information on losses beyond
the VaR

2 This measure can lead some agents to voluntarily take more risk in
a decentralized risk management system

3 It can lead to a decision maker to choose a project with
exorbitantly large losses, as long as these losses do not affect the
VaR (because they occur with low probability)

4 the VaR is not a coherent measure of risk because the
sub-additivity property is not respected

ρpX ` Y q ď ρpXq ` ρpY q
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Expected Shortfall

ES: Expected shortfall
The Expected shortfall (ES) associated with a hedge rate α is the
average of the α% worst expected losses

EStpαq “ ´
1
α

ż α

0
F ´1

Rt
ppqdp

where FRt is the cumulative distribution of the density function fRtprq

Remark 1: The Expected Shortfall is sometimes denoted
the Conditional Loss or Expected Tail Loss
The ES gives average loss in the worst case scenario. i.e in the α%
situations where the losses exceed the Var

Lafarguette & Raboun (IMF STX) Volatility Modeling STI, 17 April 2023 60 / 62



Expected Shortfall

Lafarguette & Raboun (IMF STX) Volatility Modeling STI, 17 April 2023 61 / 62



Thank you for your attention!
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Property 1: Proof
Consider the following ARCH process

Xt “ Ztσt

σ2
t “ α0 ` α1X2

t´1

Add X2
t on both sides of the second equation and rearrange, we get

X2
t “ α0 ` α1X2

t´1 ` pX2
t ´ σ2

t q

“ α0 ` α1X2
t´1 ` pZ2

t σ2
t ´ σ2

t q

“ α0 ` α1X2
t´1 ` σ2

t pZ2
t ´ 1q

νt “ X2
t ´ σ2

t “ σ2
t pZ2

t ´ 1q is an innovation, i.e Erνt|Xt´1s “ 0
Erνt|Xt´1s “ Erσ2

t pZ2
t ´ 1q|Xt´1s

“ σ2
t ErpZ2

t ´ 1q|Xt´1s

“ σ2
t pErZ2

t |Xt´1s ´ 1q

“ σ2
t pVpZtq ´ 1q “ 0

Lafarguette & Raboun (IMF STX) Volatility Modeling STI, 17 April 2023 1 / 5



Property 2: Proof

Consider the following ARCH process

Xt “ Ztσt

σ2
t “ α0 ` α1X2

t´1

Xt is a martingale di§erence, since

ErXt|Xt´1s “ ErZtσt|Xt´1s

“ σtErZt|Xt´1s

“ σtErZts

“ 0

Since Zt is an i.i.d process of mean 0
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Property 3: Proof
Consider an ARCH(1) model Xt

EpXtq “ EpZtσtq

“ ErEpZtσt|Xt´1qs

“ ErσtEpZt|Xt´1qs

“ Erσt ˆ 0s

“ 0

Since ErXts “ 0, we have VpXtq “ ErX2
t s

We know that X2
t has an AR(1) representation with

ErX2
t s “ Erα0 ` α1X2

t´1 ` νts “ α0 ` α1ErX2
t´1s

ô ErX2
t s “

α0
1 ´ α1

Lafarguette & Raboun (IMF STX) Volatility Modeling STI, 17 April 2023 3 / 5



Property 4: Proof

Consider an ARCH(1) model Xt, we have

EpX4
t |Xt´1q “ EpZ4

t σ4
t |Xt´1q

“ EpZ4
t |Xt´1qσ4

t

“ EpZ4
t qpσ2

t q2

Zt
i.i.d
„ N p0, 1q, so EpZ4

t q “ 3. We get

KpX4
t |Xt´1q “

EpX4
t |Xt´1q

VpX4
t |Xt´1q2 “

3pσ2
t q2

pσ2
t q2 “ 3

The conditional distribution is mesokurtic
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Property 4: Proof (cont’d)

ErX4
t s “ EpEpX4

t |Xt´1qq

“ 3Eppα0 ` α1X2
t´1q

2
q

“ 3
´

α2
0 ` 2α0α1EpX2

t´1q ` α2
1EpX4

t´1q

¯

“ 3
˜

α2
0 `

2α2
0α1

1 ´ α1
` α2

1EpX4
t´1q

¸

“ 3α2
0

ˆ

1 ` α1
1 ´ α1

˙

` 3α2
1EpX4

t´1q

Xt is stationary, then ErX4
t s “ ErX4

t´1s, and we know VpXtq “
α0

p1´α1q

ErX4
t s “

3α2
0p1 ` α1q

p1 ´ 3α2
1qp1 ´ α1qq

KpXtq “
EpX4

t

VpXtq2 “
3α2

0p1 ` α1q

p1 ´ 3α2
1qp1 ´ α1qq

α0
p1 ´ α1q

“ 3
˜

1 ´ α2
1

1 ´ 3α2
1

¸

ą 3

The Kurtosis is finite and positive as soon as α2
1 ă 1{3. Moreover, the

conditional distribution is leptokurtic.
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